June 12, 2019

STRUCTURAL CALCULATIONS

(Permit Submittal)

KAHN RESIDENCE ADDITION

18 Brook Bay Road
Mercer Island, WA 98040

Quantum Job Number: 17527.01.01

Prepared for:
DIMARCO ARCHITECTURE
1319 E. Howell St.
Seattle, Washington 98122

Prepared by:
QUANTUM CONSULTING ENGINEERS
1511 Third Avenue, Suite 323
Seattle, WA 98101
TEL 206.957.3900
FAX 206.957.3901

QUANTUM

STRUCTURAL DESIGN CRITERIA

KAHN RESIDENCE ADDITION
18 BROOK BAY
MERCER ISLAND, WA 98105

QUANTUM JOB NUMBER: 17527.01
CODE CRITERIA:
BUILDING CODE 2015 INTERNATIONAL BUILDING CODEBUILDING DEPARTMENTCITY OF MERCER ISLAND
WIND CRITERIA110 MPH; EXPOSURE "C"
. RISK CATEGORY $=1 I$

SEISMIC ZONE SDC = D
SITE CLASS = D
$R=6.5$
$I_{E}=1.0$
$S_{S}=1.46, S_{1}=0.51$
$S_{D S}=0.97, S_{D 1}=0.51$
SNOW 25 PSF
LIVE LOAD (RESIDENTIAL) 40 PSF
SOILS CRITERIA:
ALLOWABLE BEARING PRESSURE (ASSUMED) 1,500 PSF
MINIMUM FOOTING WIDTH CONTINUOUS: 18" MIN., ISOLATED: 24" MIN.
FROST DEPTH 18" MIN
ACTIVE SOIL PRESSURE (RESTRAINED / UNRESTRAINED) 50 PCF / 35 PCF
SEISMIC SURCHARGE PRESSURE (RESTRAINED / UNRESTRAINED) 8H PSF / 6H PSF
PASSIVE SOIL PRESSURE 350 PCF
COEFFICIENT OF FRICTION 0 .35
MATERIALS CRITERIA:
CONCRETE (28 DAY STRENGTH):FOUNDATION/S.O.G - design for 2,500 psi but specify 3,000 for exposure ${ }^{\prime} \mathrm{C}=3,000 \mathrm{PSI}$
REINFORCING STEEL:
GRADE 60 (\#5 BAR OR LARGER) $F Y=60,000 \mathrm{PSI}$
GRADE 40 (\#4 BAR) FY=40,000 PSI
WOOD FRAMING:
2X, 3X, \& 4X FRAMING MBRS HF\#2 OR DF\#2
6X FRAMING MBRS DF\# 1
GLULAM BEAMS 24F-V4 (V8 @ CONT. AND CANT. MBRS)
PARALLAM BEAMSLSL MEMBERS - BEAMS \& HEADERS1.55 E LSL
WOOD SHTG APA RATED

STRUCTURAL DESIGN CRITERIA

KAHN RESIDENCE ADDITION

18 BROOK BAY

MERCER ISLAND, WA 98105

QUANTUM JOB NUMBER: 17527.01

ASSEMBLY WEIGHTS

ROOF LOADS

STANDARD ROOFING
1/2" PLYWOOD SHEATHING
ROOF JOISTS @ 24" O.C.
R38 INSULATION
LIGHTS, DUCTS
5/8" GWB
PV ALLOWANCE

MISCELLANEOUS

COMMENTS

4.0 PSF
1.5 PSF
2.1 PSF
1.0 PSF
0.5 PSF
2.8 PSF
5.0 PSF INCL. W/ MISC.

FOR SEISMIC

	2.5	PSF
	ROOF DL	
	17.0	PSF

FLOOR LOAD

HARDWOOD FLOORING
3/4" SHEATHING
FLOOR JOISTS @ 16" O.C.
LIGHTS, DUCTS
5/8" GWB
MISCELLANEOUS

QTC Hazards by Location

Search Information

Address:	18 Brook Bay Rd, Mercer Island, WA 98040, USA
Coordinates:	$47.55261290000001,-122.23090780000001$
Elevation:	93 ft
Timestamp:	$2019-06-05 \mathrm{~T} 14: 15: 48.675 Z$
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	II
Site Class:	D

Site Class: D

Basic Parameters

Name	Value	Description
S_{S}	1.46	$\mathrm{MCE}_{\mathrm{R}}$ ground motion (period=0.2s)
S_{1}	0.506	$\mathrm{MCE}_{\mathrm{R}}$ ground motion (period=1.0s)
S_{MS}	1.46	Site-modified spectral acceleration value
$\mathrm{S}_{\mathrm{M} 1}$	* null	Site-modified spectral acceleration value
S_{DS}	0.973	Numeric seismic design value at 0.2 s SA
$\mathrm{S}_{\mathrm{D} 1}$	* null	Numeric seismic design value at 1.0 s SA

* See Section 11.4.8
-Additional Information

Name	Value	Description
SDC	* null	Seismic design category
$\mathrm{Fa}_{\text {a }}$	1	Site amplification factor at 0.2s
Fv	* null	Site amplification factor at 1.0s
$\mathrm{CR}_{\text {s }}$	0.902	Coefficient of risk (0.2s)
CR_{1}	0.898	Coefficient of risk (1.0s)
PGA	0.625	MCE ${ }_{\text {G }}$ peak ground acceleration
$\mathrm{F}_{\text {PGA }}$	1.1	Site amplification factor at PGA
PGA ${ }_{M}$	0.688	Site modified peak ground acceleration
T_{L}	6	Long-period transition period (s)
SsRT	1.46	Probabilistic risk-targeted ground motion (0.2s)
SsUH	1.619	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	4.172	Factored deterministic acceleration value (0.2s)
S1RT	0.506	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.564	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	1.621	Factored deterministic acceleration value (1.0s)
PGAd	1.398	Factored deterministic acceleration value (PGA)

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.
While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Structure: Kahn Residence Addition
Address:
Latitude:
Longitude:

Structure Classification

Risk Category : II per ASCE Table 1.5-1

Seismic Force-Resisting System: Light-Framed Wood Walls Sheathed with Structural Panels

$\mathrm{R}:$	$\mathbf{6 1 / 2}$	per ASCE Table 12.2-1
$\mathrm{W}_{\mathrm{o}}:$	$\mathbf{2 1 1 2}$	per ASCE Table 12.2-1
$\mathrm{C}_{\mathrm{d}}:$	$\mathbf{4}$	per ASCE Table 12.2-1
$\mathrm{h}_{\mathrm{n}}(\mathrm{ft}):$	$\mathbf{2 6 . 0 0}$	height above the base to the highest level of the structure

Site Ground Motion

Reg. Structure 5 Stories or Less:	Yes	Ss $(\max)=1.5$	Per ASCE 12.8.1.3	
$S_{1}(\mathrm{~g}-\mathrm{sec}):$	0.51	$\mathrm{~S}_{\mathrm{S}}(\mathrm{g}-\mathrm{sec}):$	1.46	
Site Class:	D	Per Geotechnical Report	per ASCE Table 20.3-1	
$\mathrm{S}_{\mathrm{D} 1}(\mathrm{~g}-\mathrm{sec}):$	$\mathbf{0 . 5 1}$	$\mathrm{S}_{\mathrm{DS}}(\mathrm{g}-\mathrm{sec}):$	0.97	per ASCE 11.4.4

Fundamental Period per ASCE 12.8.2

Period Method: Structure Type:	Approximate Fundamental Period All Other Structural Systems	
$\mathrm{T}_{\mathrm{L}}(\mathrm{sec}):$	6.00	ASCE Figures 22-12 through 22-16
$\mathrm{Ta}(\mathrm{sec}):$	0.23	Ct^{*} hnx per ASCE Eq. 12.8-7
$\mathrm{T}_{\text {use }}(\mathrm{sec}):$	0.23	$-<=\mathrm{TL}$

Equivalent Lateral Force Procedure Design Base Shear per ASCE 12.8

$$
\begin{array}{rcl}
\mathrm{C}_{\mathrm{s}}: & 0.15 & =\mathrm{S}_{\mathrm{DS}} /\left(\mathrm{R} / I_{E}\right) \text { per ASCE Eq. 12.8-2 } \\
\mathrm{C}_{\mathrm{s} \text { max }}: & 0.34 & =\mathrm{S}_{\mathrm{D} 1} /\left(\mathrm{T}_{\mathrm{a}}{ }^{*} \mathrm{R} / \mathrm{I}_{\mathrm{E}}\right) \text { for } \mathrm{T}<=\mathrm{T}_{\mathrm{L}} \text { per ASCE Eq. 12.8-3 } \\
\mathrm{C}_{\mathrm{s} \text {-max }}: & 9 & =\mathrm{S}_{\mathrm{D} 1}{ }^{*} \mathrm{~T}_{\mathrm{L}} /\left(\mathrm{T}_{\mathrm{a}}{ }^{*}{ }^{*} \mathrm{R} / I_{\mathrm{E}}\right) \text { for } \mathrm{T}>\mathrm{T}_{\mathrm{L}} \text { per ASCE Eq. 12.8-4 } \\
\mathrm{C}_{\mathrm{s} \text {-min }}: & 0.04 & \text { per ASCE Eq. } 12.8-5 \\
\mathrm{C}_{\mathrm{S} \text {-min }}: & -- & =0.5 \mathrm{~S}_{1} /\left(\mathrm{R} / I_{E}\right) \text { for } \mathrm{S}_{1}=>0.6 \mathrm{~g} \text { per ASCE Eq. 12.8-6 } \\
\mathrm{C}_{\mathrm{s} \text {-use }}: & 0.150 & \\
\text { V: } & \mathbf{0 . 1 5 0} \mathbf{W} & =\text { C }_{\text {S-use }}{ }^{*} \mathrm{~W} \text { per ASCE Eq. 12.8-1 }
\end{array}
$$

Structure: Kahn Residence Addition

Seismic Parameters

$\mathrm{I}_{\mathrm{E}}:$	1.00	per ASCE Table 1.5-2
$\mathrm{S}_{\mathrm{DS}}(\mathrm{g}-\mathrm{sec}):$	0.97	per ASCE 11.4.4
Period $(\mathrm{Sec}):$	0.23	per ASCE 12.8.2.1
$\mathrm{k}:$	1.00	per ASCE 12.8.3

Vertical Distribution of Seismic Forces per ASCE 12.8.3

$$
\begin{aligned}
F_{x} & =C_{v x} V \text { per ASCE Eq. 12.8-11 } \\
C_{v x} & =\left(w_{x} h_{x}{ }^{k}\right) /\left(\text { Sw }_{i} h_{i}^{k}\right) \text { per ASCE Eq. 12.8-12 }
\end{aligned}
$$

Level	$\mathrm{h}_{\mathrm{x}}(\mathrm{ft})$	$\mathrm{w}_{\mathrm{x}}(\mathrm{k})$	$\%$ of $\mathrm{W}_{\text {total }}$	$\mathrm{w}_{\mathrm{x}}{ }^{*} \mathrm{~h}_{\mathrm{x}}{ }^{\mathrm{k}}$	$\mathrm{C}_{\mathrm{vx}}(\%)$	$\mathrm{F}_{\mathrm{x}}(\mathrm{k})$	$\mathrm{V}_{\mathrm{x}}(\mathrm{k})$
Roof	26.00	2.26	64.7%	58.79	83.1%	$\mathbf{0 . 4 3}$	
main	9.67	1.24	35.3%	11.95	16.9%	$\mathbf{0 . 0 9}$	$\mathbf{0 . 4 3}$
							$\mathbf{0 . 5 2}$

Vertical Distribution of Seismic Diaphragm Forces per ASCE 12.10.1.1

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{px}}=\left(\mathrm{SF}_{\mathrm{i}} / \mathrm{Sw}_{\mathrm{i}}\right)^{*} \mathrm{w}_{\mathrm{px}} \text { per ASCE Eq 12.10-1 } \\
& F_{p x-m a x}=\left.0.4^{*} S_{D S}{ }^{*}\right|_{E}{ }^{*} W_{p x} \text { per per ASCE 12.10.1.1 } \\
& F_{p x-\text { min }}=0.2{ }^{*} S_{D S}{ }^{*} I_{\mathrm{E}}{ }^{*} \mathrm{~W}_{\mathrm{px}} \text { per per ASCE 12.10.1.1 }
\end{aligned}
$$

Level	$\mathrm{w}_{\mathrm{px}}(\mathrm{k})$	$\Sigma \mathrm{w}_{\mathrm{i}}(\mathrm{k})$	$\mathrm{F}_{\mathrm{x}}(\mathrm{k})$	$\Sigma \mathrm{F}_{\mathrm{i}}(\mathrm{k})$	$\mathrm{F}_{\mathrm{px}}(\mathrm{k})$	Notes
Roof	2.26	2.26	0.43	0.43	$\mathbf{0 . 4 4}$	$=\mathrm{Fp}-\mathrm{min}$
main	1.24	3.50	0.09	0.52	$\mathbf{0 . 2 4}$	$=\mathrm{Fp}-\mathrm{min}$

Quantum Consulting Engineers LLC

Seattle, WA 98101

Project:	Kahn
Client:	

Date: $6 / 10 / 19$	Job No:	
Designer: dpf	Sheet:	2
Checked By:		

Wind Loads Criteria

Wind Load Criteria

Risk Category: II Table 1.5-1 Roof Type: Monoslope Roof

Basic Wind Speed:	110	Figure 26.5 .1
Exposure Category:	C	Section 26.7 .3

Roof Slope: $\quad 5.5: 12$
Mean Roof HT: $\quad 23.3 \mathrm{ft}$ UP TO 60FT
Wall Ht: 26.0 ft
$\begin{array}{cc}\text { Parapet: } & \text { No } \\ & 26.0 \mathrm{ft} \\ \end{array}$
Wind Topographic Factor, $K_{z t}$:
per Section 26.8

Terrain Type:
Direction:

Flat Terrain
Upwind of Crest
L_{h} : 200 ft dISt UPWIND OF CRESt to half ht of hill or escarp.
H: 200 ft ht. of hill or escarp. reLative to the upwind terrain
x : 50 ft dIST. (UPWIND OR DOWNWIND) FROM THE CREST TO THE BUILDING
h: 23.3 ft mean roof ht above local ground level
K_{zt} : 1.00 EQUATION 26.8-1
K_{zt} : 1.00 manually input

Quantum Consulting Engineers LLC	Project:	Kahn	Date:	Job No:	
1511 Third Avenue, Suite 323			Designer:	Sheet:	1
Seattle, WA 98101	Client:		Checked By:		

Wind Loads - Main Wind Force Resisting System

ASCE 7-10 Chapter 27 Part 2 - Enclosed Simple Diaphragm, h<160ft

Wind Load Criteria

Risk Category: II Table 1.5-1
Basic Wind Speed: 110 mph Figure 26.5.1
Exposure Category: C Section 26.7.3
$K_{z t:} \mathbf{1 . 0 0}$ Section 26.8

Note: Roof form may be flat, gable, mansard or hip

FIGURE 27.5-1

Wall Pressures:

Transverse	Longitudinal
Wind Direction	Wind Direction
P_{h} : 28.5 psf	26.9 psf
P_{0} : 26.9 psf	25.3 psf

*Values from ASCE table 27.6-1
*All Values Ultimate (multiply x0.6 for ASD)

FIGURE 27.6-1

Wind Loads - Main Wind Force Resisting System (Cont.)

ASCE 7-10 Chapter 27 Part 2 - Enclosed Simple Diaphragm, h<160ft

Roof Pressure:

Slope: 5.5:12
Mean Roof HT: 23.3 ft

Flat Roof
($\theta<10 \mathrm{deg}$)

	Zone (PSF)				
Load Case	1	2	3	4	5
1	-16.0	$\mathbf{- 1 7 . 8}$	$\mathbf{- 2 7 . 4}$	$\mathbf{- 2 4 . 4}$	$\mathbf{- 2 0 . 0}$
2	10.8	$\mathbf{- 8 . 5}$	$\mathbf{0 . 0}$	$\mathbf{0 . 0}$	$\mathbf{0 . 0}$

*Values from Table 27.6-2
*All Values Ultimate (multiply x0.6 for ASD)

Hip Roof

Table 27.6-2

Roof Overhang (PSF)

$$
P_{\text {ovh }}:-20.6 \mathrm{psf}
$$

Figure 27.6-3

Quantum Consulting Engineers LLC 1511 Third Avenue, Suite 323 Seattle, WA 98101	Project:	Kahn	Date:	6/10/19	Job No:	
			Designer:	dpf	Sheet:	3
	Client:		Checked By:			

Kahn Residence

Wind Base Shear
wind pressure
Sail Area for wind east west
Wind Base shear - east west
28.5 psf

140 sf
3993 pounds

Sail Area for wind north-south
163 psf
Wind Base shear - north south

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN
Per IBC 2015, ASCE 7-10, SDPWS 2015 \& NDS 2015
Structure: Kahn Residence Addition
Floor Level: Main

Sds $=$	0.97
Depth of Floor Framing \& Plates (Clearspan) at Interstory (in) $=$	12.00

SW Mark	$L_{s w}(f t)$	$\mathrm{h}_{\mathrm{SW}}(\mathrm{ft})$	$\mathrm{h}_{\text {SW }} /$ Lsw	Wall Framing Species	Specific Gravity G	Interstory of Base?
SW GRID South	12.00	-	-	-	-	-
SW Segment A	12.00	10.83	0.90	DF \#2	0.50	Interstory
SW Segment			\#DIV/0!	DF \#2	0.50	Base
SW GRID	0.00	-	-	-	-	-
SW Segment			\#DIV/0!	DF \#2	0.50	Base
SW Segment			\#DIV/0!	DF \#2	0.50	Base
SW Segment			\#DIV/0!	DF \#2	0.50	Base
SW GRID	0.00	-	-	-	-	-
SW Segment			\#DIV/0!	DF \#2	0.50	Base
SW Segment			\#DIV/0!	DF \#2	0.50	Base
SW Segment			\#DIV/0!	DF \#2	0.50	Base
SW Segment			\#DIV/0!	DF \#2	0.50	Base
SW Segment			\#DIV/0!	DF \#2	0.50	Base
SW GRID	0.00	-	-	-	-	-
SW Segment			\#DIV/0!	DF \#2	0.50	Base

SW Mark		$\begin{gathered} \hline \text { EQ (lb) Wall } \\ \text { (ULT) } \end{gathered}$	Wind (lb) Wall (ULT)	Wall DL (Ib) Wall	Wall DL (Ib) End 1	Wall DL (lb) End 2	Shear Wall Type	MIN. \# of End Studs	Holdown
SW GRID	South	510	1997	-	-	-	-	-	-
SW Segment	A	510	1997		0		SW-6	2	CS16 (1705)
SW Segment		0	0				SW-6		No HD
SW Segment		0	0				0		0
SW Segment		0	0				0		0
SW Segment		0	0				0		0
SW GRID							-	-	-
SW Segment		\#DIV/0!	\#DIV/0!				SW-6		HDU2 (3075DF,2215HF)
SW Segment		\#DIV/0!	\#DIV/0!				SW-6		HDU4 (4565DF, 3285HF)
SW Segment		\#DIV/0!	\#DIV/0!				SW-6		HDU4 (4565DF, 3285HF)
SW Segment		\#DIV/0!	\#DIV/0!				0		0
SW Segment		\#DIV/0!	\#DIV/0!				0		0
SW GRID							-	-	-
SW Segment		\#DIV/0!	\#DIV/0!				SW-6		HDU2 (3075DF,2215HF)
SW Segment		\#DIV/0!	\#DIV/0!				SW-6		HDU2 (3075DF,2215HF)
SW Segment	1.20	\#DIV/0!	\#DIV/0!				SW-6	2	HDU2 (3075DF,2215HF)
SW Segment	1.40	\#DIV/0!	\#DIV/0!				SW-4	2	HDU5 (5645DF, 4065HF)
SW Segment	1.70	\#DIV/0!	\#DIV/0!				SW-3	2	HDU8 (6765DF, 4870HF)
SW GRID							-	-	-
SW Segment		\#DIV/0!	\#DIV/0!				SW-6		HDU2 (3075DF,2215HF)
SW Segment		\#DIV/0!	\#DIV/0!				0		0
SW Segment		\#DIV/0!	\#DIV/0!				0		0
SW Segment		\#DIV/0!	\#DIV/0!				0		0
SW Segment		\#DIV/0!	\#DIV/0!				0		0

Quantum Consulting Engineers LLC	Project: Kahn	Date:	6/10/19	Job No:	17527.01
1511 Third Avenue, Suite 323		Designer:	dpf	Sheet:	1
Seattle, WA 98101	Client:	Checked By:			

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN

Per IBC 2015, ASCE 7-10, SDPWS 2015 \& NDS 2015
Structure: Kahn Residence Addition
Floor Level: Main

Shear Wall Schedule				$\phi_{D}=0.8$	
Shear Wall Type	Sheathing Grade, Sheathing Thickness, \& Nail Size	Panel Edge Nail Spacing (in)	Nominal Seismic SW Capacity (plf)	LRFD Seismic SW Capacity (plf)	Sheathing Shear Stiffness, $\mathbf{G}_{\text {a }}$ (lb/in)
SW-6	APA Rated, 15/32", 8d Common	6	520	416	10
SW-4	APA Rated, 15/32", 8d Common	4	760	608	13
SW-3	APA Rated, 15/32", 8d Common	3	980	784	15
SW-2	APA Rated, 15/32", 8d Common	2	1280	1024	20
2SW-4	APA Rated, 15/32", 8d Common	4	1520	1216	26
2SW-3	APA Rated, 15/32", 8d Common	3	1960	1568	30
2SW-2	APA Rated, 15/32", 8d Common	2	2560	2048	40

SW Segment Mark	Seismic Shear (plf)	Aspect Ratio Reduction	Adjusted Seismic Shear (plf)	Wind Shear (plf)	Adjusted Wind Shear (plf)	Req'd Shear (plf)	Shear Wall Type	Shear Wall Capacity (plf)	Check
A	43	1.00	43	166	119	119	SW-6	416	OK
	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	SW-6	416	\#DIV/0!
	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	SW-6	416	\#DIV/0!
	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	SW-6	416	\#DIV/0!
	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	SW-6	416	\#DIV/0!
	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	SW-6	416	\#DIV/0!
	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	SW-6	416	\#DIV/0!
	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	SW-6	416	\#DIV/0!
	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	SW-4	608	\#DIV/0!
	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	SW-3	784	\#DIV/0!
	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	\#DIV/0!	SW-6	416	\#DIV/0!

SW Segment Mark	Wall Length Lever Arm (ft)	$\begin{array}{\|c\|} \hline \text { Calculated } \\ \text { Lever Arm (ft) } \\ \hline \end{array}$	\% Different	Override Wall Length	User Input M_{Ot} Lever Arm (ft)
A	12.00	11.79	1.77\%	No	
				No	

Quantum Consulting Engineers LLC 1511 Third Avenue, Suite 323 Seattle, WA 98101

Project: Kahn	Date:	6/10/19	Job No:	17527.01
	Designer:	dpf	Sheet:	2
Client: 0	Checked By:			

LIGHT FRAMED WOOD SHEATHED PANEL SHEAR WALL DESIGN
Per IBC 2015, ASCE 7-10, SDPWS 2015 \& NDS 2015
Structure: Kahn Residence Addition
Floor Level: Main

SW Segment Mark	$\begin{aligned} & \text { Seismic } \\ & \text { Tension (lb) } \end{aligned}$	ASD Seismic Tension Above (Ib)	Seismic Tension Total (lb)	Wind Tension (Ib)	ASD Wind Tension Above (Ib)	Wind Tension Total (lb)	End 1 Dead (lb)	End 2 Dead (b)
A	322	0	322	1081	0	1081	0	0
		0			0			
		0			0			
		0			0			
		0			0			
		0			0			
		0			0			
		0			0			
		0			0			
		0			0			
		0			0			
		0			0			
		0			0			
		0			0			
		0			0			
		0			0			
		0			0			
		0			0			
		0			0			
		0			0			

SW Segment Mark	Wind End 1 Eq. 16-15	$\left.\begin{array}{\|c\|} \hline \text { End } 1 \text { Eq. } 16-16 \\ 16 \end{array} \right\rvert\,$	$\begin{gathered} \text { End } 2 \text { Eq. } \\ \text { 16-15 } \end{gathered}$	$\begin{gathered} \text { End } 2 \text { Eq. } 16 \text { - } \\ 16 \end{gathered}$	Controlling Ten. Load (b)	Holdown	Holdown Capacity (lb)	Status
A	-1081	-322	-1081	-322	-1081	CS16 (1705)	-1705	OK
						No HD		
						HDU2 (3075DF,2215HF)		
						HDU4 (4565DF, 3285HF)		
						HDU4 (4565DF, 3285HF)		
						HDU2 (3075DF,2215HF)		
						HDU2 (3075DF,2215HF)		
						HDU2 (3075DF, 2215HF)		
						HDU5 (5645DF, 4065HF)		
						HDU8 (6765DF, 4870HF)		
						HDU2 (3075DF,2215HF)		

Quantum Consulting Engineers LLC	Project: Kahn	Date:	6/10/19	Job No:	17527.01
1511 Third Avenue, Suite 323		Designer:	dpf	Sheet:	3
Seattle, WA 98101	Client: 0	Checked By:			

| Roof | Results | Current Solution | Comments |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Member Name | Passed | 1 piece(s) 2×12 Hem-Fir No. 2 @ 24 " OC | |
| Roof: Joist | Passed | 2 piece(s) 2×4 Hem-Fir No. 2 | |
| Roof:Window Header | Results | Current Solution | |
| Floor | Passed | 1 piece(s) 2×12 Hem-Fir No. 2 @ 16 " OC | |
| Member Name | Passed | 1 piece(s) 4×12 Hem-Fir No. 2 | |
| Floor: Joist | Passed | 2 piece(s) 2×12 Hem-Fir No. 2 | |
| Floor: Support Beam | | | |
| Floor: End Beam | | | |

ForteWEB Software Operator	Job Notes	
Dan Fenton Quantum Consulting Engineers (206) 957-3900 dfenton@quantumce.com		

Roof, Roof: Joist
1 piece(s) 2×12 Hem-Fir No. 2 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$607 @ 1^{\prime} 13 / 4^{\prime \prime}$	$2377(3.50 ")$	Passed (26\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Adj Spans)
Shear (lbs)	$419 @ 11^{\prime} 77 / 1^{\prime \prime}$	1941	Passed (22\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Adj Spans)
Moment (Ft-lbs)	$1403 @ 6^{\prime} 101 / 2^{\prime \prime}$	2964	Passed (47\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Live Load Defl. (in)	$0.102 @ 6^{\prime} 101 / 2^{\prime \prime}$	0.427	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans)
Total Load Defl. (in)	$0.178 @ 6^{\prime} 101 / 2^{\prime \prime}$	0.641	Passed (L/863)	--	$1.0 \mathrm{D}+1.0$ S (Alt Spans)

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: LL (2L/360) and TL (2L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at $8^{\prime} 8^{\prime \prime}$ o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $15^{\prime} 4$ " o/c unless detailed otherwise.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)			(
	Total	Available	Required	Dead	Snow	Total	
1- Beveled Plate - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50 "$	261	345	606	Blocking
2 - Beveled Plate - DF	$3.50^{\prime \prime}$	$3.50^{\prime \prime}$	$1.50^{\prime \prime}$	261	345	606	Blocking

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
1 - Uniform (PSF)	0 to $13^{\prime} 9 "$	$24 "$	17.0	25.0	Roof

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Dan Fenton Quantum Consulting Engineers (206) 957-3900 dfenton@quantumce.com		14

Roof, Roof:Window Header

2 piece(s) 2×4 Hem-Fir No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$548 @ 0$	$1823(1.50 ")$	Passed (30\%)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Shear (lbs)	$414 @ 5^{\prime \prime}$	1208	Passed (34\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Moment (Ft-lbs)	$468 @ 1^{\prime} 81 / 2^{\prime \prime}$	748	Passed (63\%)	1.15	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Live Load Defl. (in)	$0.038 @ 11^{\prime} 81 / 2^{\prime \prime}$	0.114	Passed (L/999+)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.071 @ 11^{\prime} 81 / 2^{\prime \prime}$	0.171	Passed (L/581)	--	$1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans)

System : Roof
Member Type : Drop Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/360) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 3' $5^{\prime \prime}$ o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $3^{\prime} 5^{\prime \prime} \mathrm{o} / \mathrm{c}$ unless detailed otherwise.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)				
	Total	Available	Required	Dead	Roof Live	Snow	Total	
1- Trimmer - HF	$1.50^{\prime \prime}$	$1.50 "$	$1.50^{\prime \prime}$	253	34	295	582	None
2 - Trimmer - HF	$1.500^{\prime \prime}$	$1.50 "$	$1.50^{\prime \prime}$	253	34	295	582	None

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Roof Live (non-snow: 1.25)	Snow (1.15)
0 Comments					

Weyerhaeuser Notes

 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Dan Fenton	
Quantum Consulting Engineers (206) $957-3900$ dfenton@quantumce.com	

Floor, Floor: J oist
1 piece(s) 2×12 Hem-Fir No. 2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

- Deflection criteria: LL (L/480) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 11' 3 " o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at $11^{\prime} 5$ " o/c unless detailed otherwise.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

Supports	Bearing Length			Loads to Supports (lbs)			Accessories
	Total	Available	Required	Dead	Floor Live	Total	
1 - Hanger on $111 / 4^{\prime \prime} \mathrm{HF}$ beam	3.50"	Hanger ${ }^{1}$	1.50 "	96	320	416	See note ${ }^{1}$
2 - Hanger on $111 / 4^{\prime \prime} \mathrm{HF}$ beam	3.50"	Hanger ${ }^{1}$	1.50"	96	320	416	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	Connector not found	N/A	N/A	N/A		
2 - Face Mount Hanger	Connector not found	N/A	N/A	N/A		

Vertical Load	Location (Side)	Spacing	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Comments
1 - Uniform (PSF)	0 to 12^{\prime}	$16^{\prime \prime}$	12.0	40.0	Residential - Living Areas

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Dan Fenton Quantum Consulting Engineers (206) 957-3900 dfenton@quantumce.com		16

Floor, Floor: Support Beam

1 piece(s) 4×12 Hem-Fir No. 2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	$2795 @ 2 "$	$3189(2.25 ")$	Passed (88\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	$1857 @ 11^{\prime} 23 / 4^{\prime \prime}$	3938	Passed (47\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	$5364 @ 44^{\prime} 61 / 2^{\prime \prime}$	5752	Passed (93\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	$0.076 @ 44^{\prime} 61 / 2^{\prime \prime}$	0.219	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	$0.154 @ 44^{\prime} 61 / 2^{\prime \prime}$	0.438	Passed (L/682)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at $8^{\prime} 11$ " o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 8 ' 11 " o/c unless detailed otherwise.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)				
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1- Column - HF	$3.50^{\prime \prime}$	$2.25^{\prime \prime}$	$1.97^{\prime \prime}$	1454	1090	783	3327	$11 / 4^{\prime \prime}$ Rim Board
2- Column - HF	$3.50^{\prime \prime}$	$2.25 "$	$1.97^{\prime \prime}$	1454	1090	783	3327	$11 / 4^{\prime \prime}$ Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live (1.00)	Snow (1.15)	Comments

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

SUSTAINABLE FORESTRY INITIATIVE
Weyerhaeuser

ForteWEB Software Operator	Job Notes	
Dan Fenton Quantum Consulting Engineers (206) 957-3900 dfenton@quantumce.com		17

Floor, Floor: End Beam

$\mathbf{2}$ piece(s) $\mathbf{2 \times 1 2} \mathbf{~ H e m - F i r ~ N o . ~} 2$

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1596 @ 3 1/2"	1823 (1.50")	Passed (88\%)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Shear (lbs)	1208 @ 1' 2 3/4"	3375	Passed (36\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Moment (Ft-lbs)	4294 @ 6' 3 1/2"	4482	Passed (96\%)	1.00	$1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans)
Live Load Defl. (in)	0.068 @ 6' 3 1/2"	0.300	Passed (L/999+)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)
Total Load Defl. (in)	0.268 @ 6' 3 1/2"	0.600	Passed (L/537)	--	$1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans)

System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Top Edge Bracing (Lu): Top compression edge must be braced at 4' 10 " o/c unless detailed otherwise.
- Bottom Edge Bracing (Lu): Bottom compression edge must be braced at 12' o/c unless detailed otherwise.
- Applicable calculations are based on NDS.

Supports	Bearing Length			Loads to Supports (lbs)				Accessories
	Total	Available	Required	Dead	Floor Live	Snow	Total	
1 - Hanger on $111 / 4^{\prime \prime}$ HF beam	3.50"	Hanger ${ }^{1}$	1.50 "	1247	252	315	1814	See note ${ }^{1}$
2 - Hanger on $111 / 4^{\prime \prime} \mathrm{HF}$ beam	3.50"	Hanger ${ }^{1}$	1.50"	1247	252	315	1814	See note ${ }^{1}$

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

Connector: Simpson Strong-Tie

Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	Connector not found	N / A	N / A	N / A		N / A
2 - Face Mount Hanger	Connector not found	N / A	N / A	N / A	N / A	

Vertical Loads	Location (Side)	Tributary Width	Dead $\mathbf{(0 . 9 0)}$	Floor Live $\mathbf{(1 . 0 0)}$	Snow $(\mathbf{1 . 1 5)}$	Comments
0 - Self Weight (PLF)	$31 / 2^{\prime \prime}$ to $12^{\prime} 31 / 2^{\prime \prime}$	N / A	8.6	--	--	
1 - Uniform (PSF)	0 to $12^{\prime} 7^{\prime \prime}$ (Front)	12^{\prime}	12.0	-	-	wall
2 - Uniform (PSF)	0 to $12^{\prime} 7^{\prime \prime}$ (Front)	2^{\prime}	17.0	-	25.0	roof
3 - Uniform (PSF)	0 to $12^{\prime} 7^{\prime \prime}$ (Front)	1^{\prime}	12.0	40.0	-	floor

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes
Dan Fenton Quantum Consulting Engineers (206) 957-3900 dfenton@quantumce.com	

